organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sema Öztürk Yıldırım,^a Mehmet Akkurt,^a* Süleyman Servi,^b Memet Şekerci^b and Frank W. Heinemann^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, Faculty of Arts and Sciences, Fırat University, 23119 Elazığ, Turkey, and ^cInstitut für Anorganische Chemie, Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-91058 Erlangen, Germany

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study T = 150 KMean σ (C–C) = 0.003 Å R factor = 0.042 wR factor = 0.111 Data-to-parameter ratio = 18.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(4-Chlorophenyl)-*N*-(4,5-dihydro-1*H*imidazol-2-yl)amine formamide solvate

In the title compound, $C_9H_{10}ClN_3 \cdot HC(O)NH_2$, the benzene and imidazole rings make a dihedral angle of 43.3 (1)°. In the crystal structure, molecules are linked through weak intermolecular $N-H \cdots O$, $N-H \cdots N$ and $C-H \cdots N$ hydrogen bonds, forming a three-dimensional framework.

Comment

N-Mono- and *N*,*N*-disubstituted dithiocarbamate derivatives have shown antibacterial, antiviral and antifungal activities (Kaplancikli *et al.*, 2004). 2-Arylamino-2-imidazolines have an interesting chemistry and are effective pharmacophores in medicinal chemistry. 2-Arylamino-2-imidazolines, in particular 2,6-dichlorophenylamino-2-imidazoline (*clonidine*), have a pronounced hypotensive action which is coupled with a sedative action (Saczewski *et al.*, 2003).

The molecular structure of the title compound, (I), is shown in Fig. 1. The bond lengths and angles are within normal ranges and compare well with those reported in similar compounds (Yıldırım, Akkurt, Danışman *et al.*, 2006;Yıldırım, Akkurt, Genç *et al.*, 2006; Öztürk *et al.*, 2004; Akkurt *et al.*,

Figure 1

© 2007 International Union of Crystallography All rights reserved The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.

Received 13 March 2007 Accepted 27 March 2007

15967 measured reflections

 $R_{\rm int} = 0.044$

145 parameters

 $\Delta \rho_{\text{max}} = 0.51 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.57 \text{ e } \text{\AA}^{-3}$

2655 independent reflections

2034 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Figure 2

View of the packing and hydrogen bonding of (I). Dashed lines indicate hydrogen bonds. For clarity, H atoms not involved hydrogen bonding have been omitted.

2004). The lengths of the two C–N bonds [C6-N1 = 1.415 (2) and C7-N1 = 1.342 (2) Å] are consistent with those found in related compounds (Allen *et al.*, 1987). The main molecule of the title compound, (I), is non-planar, the substituted benzene ring and the imidazole ring making a dihedral angle of 43.3 (1)°.

In the crystal structure, molecules of (I) are linked into a three-dimensional framework by intermolecular $N-H\cdots O$, $N-H\cdots N$ and $C-H\cdots N$ hydrogen bonds (Fig. 2 and Table 1). The hydrogen bonds reflect the fact that the proton at N3 is the most acidic one, which is also in agreement with the molecular structures of deprotonated 2-arylamino-2-imidazo-lines (Carpy *et al.*, 1980; Ghosh *et al.*, 1992).

Experimental

The syntheses of dimethyl *N*-(4-chlorophenyl)dithioimidocarbonate and *N*-(4-chlorophenyl)-*N*-(4,5-dihydro-1*H*-imidazol-2-yl)amine were performed according to literature procedures (Genc & Servi, 2005; Servi *et al.*, 2005). A solution of dimethyl *N*-(4-chlorophenyl)dithioimidocarbonate (0.04 mol) in DMF (15 ml) was added to a solution of ethylenediamine (5.4 ml, d = 0.897 Mg m⁻³, 0.08 mol) in DMF (15 ml), with stirring, at room temperature. The reaction mixture was refluxed at 383 K for approximatly 6–8 h, cooled, then added to ice-cold water. The resulting solid was washed with water and dried. The crude products were recrystallized from a formamide solution. Block-shaped colourless crystals of (I) suitable for X-ray analysis were obtained after six months by slow evaporation of formamide at room temperature (m.p. 420–422 K; yield 71%). IR (KBr, cm⁻¹, ν_{max}): 3284 (imidazoline N–H stretching), 3245 (N–H stretching), 1681 (C—N stretching), 1594 (N–H bending); ¹H NMR (200 MHz, CDCI₃): δ 3.67 (*s*, 1H, NH), 3.76 (*s*, 4H, imidazoline CH₂), 6.24 (broad peak, 1H, imidazoline NH), 7.05–7.40 (*m*, 4H, Ar–H).

Crystal data

 $C_9H_{10}ClN_3 \cdot CH_3NO$ $V = 1086.4 (1) Å^3$
 $M_r = 240.69$ Z = 4

 Monoclinic, $P2_1/c$ Mo K α radiation

 a = 8.5840 (5) Å $\mu = 0.34 \text{ mm}^{-1}$

 b = 13.2740 (4) Å T = 150 K

 c = 9.9080 (7) Å $0.32 \times 0.09 \times 0.07 \text{ mm}$
 $\beta = 105.789 (5)^\circ$ $0.32 \times 0.09 \times 0.07 \text{ mm}$

Data collection

Bruker–Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2002) $T_{min} = 0.900, T_{max} = 0.977$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.111$ S = 1.012655 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1A···O1	0.86	1.94	2.7759 (19)	164
$N3-H3\cdots O1^{i}$	0.86	2.05	2.793 (2)	144
$N4-H4A\cdots N2$	0.86	1.97	2.809 (2)	166
$C4-H4\cdots N4^{ii}$	0.93	2.56	3.457 (2)	162

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x - 1, y, z.

H atoms were positioned geometrically and were refined as riding, with C-H = 0.93–0.96 and N-H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Data collection: *COLLECT* (Nonius, 1999); cell refinement: *EVALCCD* (Duisenberg *et al.*, 2003); data reduction: *EVALCCD* and*SADABS* (Sheldrick, 2002); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

- Akkurt, M., Öztürk, S., Servi, S., Cansız, A., Şekerci, M. & Kazak, C. (2004). Acta Cryst. E60, 01507-01509.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Carpy, A., Hickel, D. & Leger, J. M. (1980). Cryst. Struct. Commun. 9, 37-41.
- Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Genc, M. & Servi, S. (2005). Heteroat. Chem. 16, 142-147.
- Ghosh, S. & Dattagupta, J. K. (1992). Z. Kristallogr. 200, 127-132.
- Kaplancikli, Z. A., Turan-Zitouni, G., Revial, G. & Iscan, G. (2004). Phosphorus Sulfur Silicon, 179, 1449–1454.

Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.

- Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004). Acta Cryst. E60, 0425-0427.
- Saczewski, F., Saczewski, J. & Gdaniec, M. (2003). J. Org. Chem. 68, 4791-4796.
- Servi, S., Genc, M., Gur, S. & Koca, M. (2005). Eur. J. Med. Chem. 40, 687-693.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
- Yıldırım, S. Ö., Akkurt, M., Danışman, O., Şekerci, M. & Fun, H.-K. (2006). Acta Cryst. E62, o3812-o3813.
- Yıldırım, S. Ö., Akkurt, M., Genç, M., Şekerci, M. & Fun, H.-K. (2006). Acta Cryst. E62, 03697-03698.